
1. Introduction
Organic aerosol (OA) account for a major fraction of atmospheric aerosol particles (Hallquist et  al.,  2009; 
Kanakidou et al., 2005; Zhang et al., 2007) comprising between 20% and 50% of fine aerosol mass in the conti-
nental mid-latitudes (Putaud et al., 2004; Saxena & Hildemann, 1996), 30%–80% in the free troposphere (Murphy 
et al., 2006), and over 80% in tropical forests (Andreae & Crutzen, 1997; Roberts et al., 2001). Secondary organ-
ic aerosol (SOA) are derived from gas-to-particle conversion processes, including aqueous processing (Blando 
& Turpin, 2000; Ervens et  al.,  2011; Warneck, 2003), wherein oxidized volatile organic compounds (VOCs) 
partition into cloud droplets or wet aerosol particles and undergo chemical reactions to form low-volatility prod-
ucts that remain in the condensed phase (Ervens, 2015; Ervens et al., 2011; McNeill, 2015). The formation of 
SOA through aqueous processing has been estimated to serve as a global SOA source comparable to the gas-
phase pathway, with 90% of aqueous-phase SOA formed in-cloud (Fu et al., 2008). Using the scheme from Fu 

Abstract Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing 
diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% 
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originates from aqueous processing.
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et al. (2008), Heald et al. (2011) found contributions of SOA to total OA ranging between 20% and 80% across 
environments. Oxygenated organic species comprise 60%–95% of total organic aerosol mass across urban and 
remote sites (Zhang et al., 2007), while SOA from VOCs explains up to 70% of global organic carbon mass 
(Hallquist et  al.,  2009). More recent work reports reduced discrepancy between models and observations for 
SOA concentrations (Hodzic et al., 2016; Pai et al., 2020; Zhu & Penner, 2019). However, despite improvements 
in modeling organic aerosol (Heald et al., 2005, 2011), atmospheric chemistry models still underestimate SOA 
(Schroder et al., 2018) due partly to an incomplete understanding and representation of aqueous processes, re-
sulting in poor model parameterization (Hallquist et al., 2009; McNeill, 2015). The inclusion of SOA formation 
by aqueous phase processes has been shown to decrease model bias (−64%–−15%) and increase model corre-
lations with observations (R = 0.5–0.6) (Carlton et al., 2008); thus, improving SOA estimates is a key area of 
development for models to more accurately evaluate the impacts of atmospheric aerosol particles and reduce 
uncertainties regarding the net effect of aerosol particles on health and climate (Intergovernmental Panel on 
Climate Change, 2014).

Oxalic acid is the most abundant organic acid in tropospheric aerosol particles across different regions (Cruz 
et al., 2019; Yang et al., 2014; Ziemba et al., 2011). The ion oxalate (OXL) is a well-established tracer of aque-
ous processing, contributing 1%–10% of total particulate mass (Ervens, 2015; Myriokefalitakis et al., 2011) and 
3%–4% of total organic mass over marine/continental areas (Sorooshian et  al.,  2010). OXL is often used in 
combination with other secondary tracers such as sulfate (SO4

2−) to assess the extent of aqueous processing in 
a region (Crahan et al., 2004; Hilario, Cruz, Bañaga, et al., 2020; Sorooshian, Varutbangkul, et al., 2006; Wang 
et al., 2012; Yu et al., 2005). Direct sources are thought to be minor relative to production via aqueous process-
ing (Ervens, 2015; Huang & Yu, 2007; Myriokefalitakis et al., 2011) and photochemistry (Zhang et al., 2020). 
Sources of gaseous OXL precursors include biomass burning (BB) (Narukawa et al., 1999; Yang et al., 2014) and 
biogenic emissions (Boone et al., 2015). Early model simulations overestimated OXL by an order of magnitude 
(Crahan et al., 2004) while global simulations by Myriokefalitakis et al. (2011) showed better agreement over ma-
rine/rural environments between observed and modeled OXL (modeled:observed slope = 1.16 ± 0.14; R = 0.60) 
but could not capture OXL over urban regions (weak correlation; r ≈ 0).

The OXL:SO4
2− ratio has been suggested in past work to be an indicator of aqueous processing (Ervens et al., 2014; 

Wonaschuetz et al., 2012; Yu et al., 2005). The usage of the ratio as an aqueous processing marker implies that 
OXL and SO4

2− are entirely sourced from aqueous-phase oxidation, whether it be in cloud droplets or wet aerosol 
particles, and does not account for gas-phase oxidation in cloud-free air (Ervens, 2015; D. D.; Huang et al., 2020; 
Zhan et al., 2021) or direct emissions of OXL (Chebbi & Carlier, 1996). This is a good assumption for OXL as 
there is thought to be no gas-phase reaction that would produce OXL (i.e., an aqueous medium is required for 
OXL production) (Warneck, 2003); however, OXL is influenced by gas-particle partitioning equilibrium and can 
exist in the gas-phase as oxalic acid (Nah et al., 2018; Tao & Murphy, 2019). For SO4

2−, gas-phase oxidation is an 
important source of uncertainty as it can dominate over aqueous processing at times (D. D. Huang et al., 2020). 
Though we also note that oxidation in the gas-phase is much slower than in the aqueous-phase (Cautenet & 
Lefeivre, 1994) and aqueous-phase oxidation explains 60%–90% of SO4

2− in global models (Barth et al., 2000; 
Faloona, 2009; Fu et al., 2008).

The OXL:SO4
2− ratio can serve as an aqueous processing marker because aqueous media (including clouds and 

wet aerosol particles) facilitate the production of both OXL and SO4
2− at rates dependent on liquid water content 

for SO4
2− formation and droplet surface area for OXL (Ervens et al., 2014; McVay & Ervens, 2017). These two 

cloud parameters correlate within growing clouds (Kim et al., 2003), which connects in-cloud OXL and SO4
2− 

production. The OXL:SO4
2− ratio has been observed to correlate well with cloud fraction and fall within 0.01–

0.03 between 0 and 4 km above ground level (AGL) when cloud fractions are high (Wonaschuetz et al., 2012). 
Therefore, identifying a range in the OXL:SO4

2− ratio across different environments can be useful for comparing 
relative extents of aqueous processing with higher ratios suggesting more processed air. This comes with the as-
sumptions outlined above that SO4

2− is mainly sourced from aqueous processing, which may not hold for certain 
environments. However, this ratio is expected to be particularly applicable near clouds. It is important to note that 
this ratio likely exhibits a seasonal cycle as observed in Tao and Murphy (2019). Work by Yao et al. (2004) also 
demonstrated seasonal shifts in the relative contributions of primary and secondary OXL.

Laboratory experiments are often relied on for mechanistic details of aerosol particles (e.g., Hennigan et al., 2010; 
Pang et al., 2019) but sometimes disagree with aircraft measurements (May et al., 2014). Thus, aircraft campaigns 
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provide a valuable opportunity to study aerosol particles influenced by cloud processes in their most natural 
environment (Sorooshian et al., 2020). This study leverages composition data from multiple field campaigns, 
predominantly based on airborne measurements, to investigate the following questions: (a) Is there a generally 
consistent range of OXL:SO4

2− across different regions? (b) does this ratio depend on particle size? and (c) what 
conditions can significantly affect OXL:SO4

2− values?

2. Methods
This work relies mostly on airborne field datasets, focusing mainly on particle-into-liquid sampler (PILS) data. 
The PILS converts sampled aerosol particles into droplets sufficiently large to be collected via inertial impaction, 
with the resultant liquid transported to vials on a rotating carousel for post-collection chemical analysis via ion 
chromatography (IC) (Sorooshian, Brechtel, et al., 2006; Weber et al., 2001).

Table 1 summarizes relevant details across campaigns, namely: the International Consortium for Atmospheric 
Research on Transport and Transformation (ICARTT), the Marine Stratus/Stratocumulus Experiment (MASE-I), 
the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Marine Stratus/Stratocumu-
lus Experiment II (MASE-II), the Nucleation in California Experiment (NiCE), the Atmospheric Tomography 
Mission (AToM), the Cloud, Aerosol, and Monsoon Processes-Philippines Experiment (CAMP2Ex), the ground-
based CAMP2Ex weatHEr and CompoSition Monitoring (CHECSM) study, and the Aerosol Cloud meTeorology 
Interactions oVer the western ATlantic Experiment (ACTIVATE). Note that species from AToM were collected 
by Soluble Acidic Gases and Aerosol (SAGA) filters (Dibb et al., 2002, 2003). We use ground-based data from 
Metro Manila, Philippines during CHECSM collected by a micro-orifice uniform deposit impactor (MOUDI) 
and analyzed via IC to assess how the OXL:SO4

2− ratio may vary within the mixed layer and across particle sizes. 
We examined a total of 53 MOUDI sets that were collected on a weekly basis with a sample duration of ∼48 hr 
per set. Six of those sets were impacted by BB based on the criteria presented by Gonzalez et al. (2021) for the 
same data set.

As we analyze a CAMP2Ex case study in Section 3.2, we summarize the campaign here with more details provid-
ed in Hilario et al. (2021). CAMP2Ex took place over the Western Pacific and aimed to study the influence of ra-
diation, convection, and meteorology on aerosol and gas species. With 19 research flights from August–October 
2019, CAMP2Ex provided a rich composition, radiation, and convection dataset spanning 0–9 km AGL. In this 
study, we analyze submicrometer non-refractory aerosol from the aerosol mass spectrometer (AMS; Aerodyne) 
(Canagaratna et al., 2007; DeCarlo et al., 2006) and size distributions collected by a laser aerosol spectrometer 
(LAS; TSI Model 3340) for particle diameters 50–3162 nm. A comparison of SO4

2− from the PILS and AMS 
during CAMP2Ex shows good agreement (AMS:PILS slope = 0.81; R = 0.88), suggesting that SO4

2− was pre-
dominantly in the submicrometer size range given the size ranges of the AMS (PM1) and PILS (PM∼4). Based on 
sea salt SO4

2− calculations, less than 5% of SO4
2− during CAMP2Ex originated from sea salt.

During AToM, CAMP2Ex, and ACTIVATE, the aerosol sampling inlet likely limited the upper size to approxi-
mately 4 μm (McNaughton et al., 2007) although there may have been additional impaction losses in the sampling 
lines internal to the aircraft that further smoothed the particle transmission curve near this upper bound. This 
higher cutoff size allowed for sampling of sea salt and dust.

To meaningfully compare OXL:SO4
2− ratios between campaigns, we separated out samples impacted by strong 

point sources (e.g., ship plumes, cattle feedlots, smoke) as identified using flight scientist notes and clear en-
hancements in particle concentration data. When calculating species ratios, we excluded instances when the 
denominator value was below its fifth percentile to reduce the uncertainty caused by low denominator values. 
Ratios of species in this study refer to mass ratios unless otherwise indicated (e.g., molar ratios). To quantify an 
all-campaign statistic and uncertainty, median and 95% confidence intervals of the OXL:SO4

2− ratio were derived 
via bootstrapping of all campaigns using different combinations of sample size and number of iterations, exclud-
ing samples with confounding influence (further details are provided in Table S1 in Supporting Information S1).
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3. Results
3.1. Statistics of the OXL:SO4

2− Ratio

Across multiple environments (Figure 1), we observe similarities in the range of the OXL:SO4
2− ratio (i.e., slope) 

across campaigns except for CAMP2Ex (discussed in Section 3.2). A combined plot of all campaigns suggests a 
common range of OXL:SO4

2− across different environments (Figure S1 in Supporting Information S1). Visually, 

Figure 1. Linear regressions of oxalate (OXL) and SO4
2− mass concentrations across different field campaigns sorted chronologically. All campaigns are aircraft-

based except for the Cloud, Aerosol, and Monsoon Processes-Philippines Experiment (CAMP2Ex) weatHEr and CompoSition Monitoring (CHECSM; g), which was 
ground-based. Statistics for BB-impacted samples are presented separately in red. CAMP2Ex high-OXL and high-SO4

2− populations are colored in yellow and purple, 
respectively, in (h). Axes limits are not standardized across panels. In addition to Pearson's R, the median absolute deviation (MAD) was used as a measure of slope 
goodness-of-fit.
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the range in OXL:SO4
2− (Figure S1 in Supporting  Information S1) decreases with increasing concentrations, 

perhaps from a clearer signal of aqueous processing at higher concentrations.

Bootstrapping across all campaigns reveals a stable median OXL:SO4
2− of 0.0217 (R = 0.76; N = 2948) (details 

in Table S1 in Supporting Information S1) with 95% confidence interval bounds (0.0154–0.0296) indicating a 
relative uncertainty range of ∼±30% around the median. The bootstrapped statistics are supported by averaging 
the OXL:SO4

2− slopes between campaigns in Figure 1 (mean: 0.0184, standard deviation: 0.007, median abso-
lute deviation (MAD): 0.004), which, similar to our bootstrapping method, weights all campaigns equally and 
removes the statistical bias toward larger datasets. The bootstrapped 95% confidence interval of our observed OX-
L:SO4

2− (0.0154–0.0296) is in excellent agreement with the ratio of yields between aqueous SOA (0.008–0.033; 
Ervens et al., 2011) and SO4

2− (approximately unity), corroborating the hypothesis of a general range in OXL:-
SO4

2−. Numerous studies spanning a diverse set of environments have reported OXL:SO4
2− values (Table S2 in 

Supporting Information S1) with several falling within our bootstrapped range.

Cumulative probability functions (CDFs) were plotted to more easily compare OXL:SO4
2− between campaigns 

(Figure S2 in Supporting Information S1). As point-by-point ratios are sensitive to background levels of OXL and 
SO4

2−, we plotted CDFs of their enhancement ratio (ΔOXL/ΔSO4) where values were subtracted by their tenth 
percentile to approximate background levels per campaign. The resulting CDFs showed similar curves between 
multiple campaigns and revealed that approximately 20% of point-by-point OXL:SO4

2− values fall within our 
bootstrapped 95% confidence interval (0.0154–0.0296) while ∼50% of OXL:SO4

2− values fall within 0.010–
0.050. In comparison with the linear regression slope, point-to-point ratios are more susceptible to differences 
in background, resulting in differences in agreement with our 95% confidence interval (e.g., CHECSM). This is 
a consequence of the point-by-point calculation: although the data set as a whole may have a mean slope within 
our confidence interval, there may still be variability in the OXL:SO4

2− ratios of individual points. Thus, as the 
tenth percentile merely accounts for campaign backgrounds, the linear regression slopes (Figure 1) may better 
handle different environments by implicitly accounting for individual background levels via non-zero intercepts.

Surface OXL:SO4
2− values from CHECSM agree with the bootstrapped 95% confidence interval for non-BB 

samples for PM18 (0.0264; Figure 1g) and PM1 (0.0196) modes (R = 0.73 for both). Size-resolved data show 
that this agreement is greatest between 0.32–1 μm (Figure S3a in Supporting Information S1), where OXL and 
SO42- masses mostly reside (Cruz et  al.,  2019). An increase in supermicrometer OXL:SO4

2− (Figure S3a in 
Supporting Information S1) suggests the enhancement of OXL via gas-particle partitioning of OXL and/or its 
precursors onto coarse particles as documented for the CHECSM region (Stahl et al., 2020b, 2021). These results 
suggest the ratio may be applicable to the mixed layer for submicrometer particles.

AToM provides insight into the OXL:SO4
2− ratio over remote marine environments in both hemispheres. The 

Pacific and Atlantic Oceans (<3 km AGL) have a combined OXL:SO4
2− ratio of 0.0207 (R = 0.51) (Figure 1f). 

Separately, the Pacific and Atlantic have ratios of 0.0180 (R = 0.36) and 0.0251 (R = 0.72), respectively, re-
markably similar to other environments (Figure 1). Across altitudes (Figure S4 in Supporting Information S1), 
OXL:SO4

2− values for the Pacific between 0 and 7.5 km AGL are within our 95% confidence interval (Figure 
S4a in Supporting Information S1) but only near-surface Atlantic samples fall within our confidence interval 
(Figure S4c in Supporting Information S1), possibly due to OXL and/or its precursors undergoing gas-particle 
partitioning onto Saharan dust.

Variability in OXL:SO4
2− across campaigns was most evident in MASE-II (Figure  1d) and CAMP2Ex (Fig-

ure 1h), which had instances of very low OXL:SO4
2−, attributable to (a) fresher plumes that have not had time 

to form OXL (Wonaschuetz et al., 2012), (b) the degradation of OXL into CO2 (Zhou et al., 2020), (b) the for-
mation of OXL-metal complexes (Sorooshian et al., 2013; Tao & Murphy, 2019), and (d) the presence of high 
SO4

2− backgrounds. Correlation coefficients below 0.50 (Figure 1) signify the presence of confounding sources, 
an expected result given the diversity of environments analyzed. Seasonal factors may also influence the ratio 
(Tao & Murphy, 2019). Variability between campaigns (Figure 1) may be suggestive of SO4

2− from cloud-free 
photochemistry and gas-phase oxidation (Ervens, 2015), which are important sources of uncertainty when using 
the OXL:SO4

2− ratio to assess aqueous processing, as our proposed range implies that SO4
2− is mainly from 

aqueous processing.

The main utility of this ratio is to gauge relative rather than absolute extents of aqueous processing between air 
masses via a comparison of inferred OXL. Considering the differences between OXL and SO4

2− in terms of their 
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precursors, formation mechanisms, and sinks, the consistency of the OXL:SO4
2− ratio across multiple environ-

ments implies a convergence toward a fairly narrow range, which is assisted in part by the large sample sizes used 
in this study.

3.2. Source of the CAMP2Ex High-OXL Population

Oxalate and SO4
2− from CAMP2Ex show three populations: high-OXL, high-SO4

2−, and BB-impacted, each 
characterized by a distinct OXL:SO4

2− slope (Figure 1h). BB-impacted samples are defined as data collected 
during RFs 9 and 10 (15 and 16 September 2019, respectively), which targeted smoke emissions. The high-OXL 
population was defined with OXL:SO4

2− > 0.3 and the high-SO4
2− population with OXL:SO4

2− < 0.06; varying 
the high-OXL ratio lower threshold within 0.10–0.30 and high-SO4

2− upper threshold within 0.06–0.10 does not 
impact results of the analyses presented below. Ensuing discussion about these three populations points to impor-
tant influences on the OXL:SO4

2− ratio.

The high-OXL population during CAMP2Ex (Figure 1h) was not observed in the other field campaigns. These 
high-OXL samples were mostly sampled within the free troposphere (>5 km) (Figure S5b in Supporting Infor-
mation S1), altitudes of which were rarely sampled in other field campaigns with AToM being the exception. A 
few reasons can explain the high-altitude, high-OXL samples during CAMP2Ex: (a) OXL's lengthier chemical 
formation pathways compared to SO4

2− (Ervens, 2015; Sorooshian, Lu, et al., 2007), (b) inefficient scavenging of 
gaseous precursors as air masses are transported upward (Heald et al., 2005), and (c) gas-phase OXL and/or its 
precursors partitioning onto dust particles (Stahl et al., 2020b, 2021; Sullivan & Prather, 2007). As the PILS sam-
pled PM4 during CAMP2Ex, we hypothesize that the enhanced OXL is due to gas-particle partitioning of OXL 
and/or its precursors onto coarse mode particles such as dust or sea salt (Mochida et al., 2003; Rinaldi et al., 2011; 
Sullivan & Prather, 2007; Turekian et al., 2003), evidenced by a prominent coarse mode peak (Dp ∼ 2.5 μm) in 
the size distributions of high-OXL samples (Figure S5 in Supporting Information S1). Among the two sources, 
dust is more likely based on the higher affinity of OXL and/or its precursors to partition onto dust particles com-
pared to sea salt particles (Stahl et al., 2020b). Furthermore, efficient wet scavenging of sea salt reduces its free 
troposphere concentrations as compared to those of the marine boundary layer (Murphy et al., 2019; Schlosser 
et al., 2020).

Though both AToM and CAMP2Ex sampled a wide range of altitudes, no high-OXL population was observed 
during AToM. This is because CAMP2Ex operated near major dust sources such as the Maritime Continent (Hi-
lario, Cruz, Cambaliza, et al., 2020) and continental Asia (Matsumoto et al., 2003) while data from AToM rep-
resent more remote marine environments (Table 1). Though the OXL:SO4

2− ratio from AToM is indeed slightly 
enhanced aloft over the Atlantic (Figure S4c in Supporting Information S1), this is still a full order of magnitude 
lower than that of the high-OXL population from CAMP2Ex (Figure 1h).

To more deeply characterize the high-OXL population, we compared several key variables between the CAMP2Ex 
high-OXL and high-SO4

2− populations (Table S3 in Supporting Information S1), all of which showed statistically 
significant differences based on the Mann-Whitney U-test (99% confidence level; p < 0.01). The following char-
acteristics hint to gas-particle partitioning of OXL and/or its precursors onto dust aloft as has been documented in 
other studies (e.g., Stahl et al., 2020b; Sullivan & Prather, 2007): (a) dust species such as Ca2+ (Kchih et al., 2015) 
had approximately double the mass concentration in high-OXL air as compared to high-SO4

2− air (Table S3 in 
Supporting Information S1), (b) high-OXL air was mostly sampled in the free troposphere (Figure S5 in Support-
ing Information S1), (c) ionic crustal ratios in the free troposphere (>5 km) were more similar to dust values than 
those for sea salt based on literature (Park et al., 2004; Švédová et al., 2019; Wang et al., 2018) (Figure 2), and 
(d) a prominent coarse mode peak is observed for high-OXL samples (Figure S6 in Supporting Information S1). 
Among the other two campaigns sampling PM4, elevated OXL:SO4

2− values at higher altitudes were also ob-
served during AToM (Figure S4 in Supporting Information S1); during ACTIVATE, dust was not prevalent at the 
altitudes sampled (<5 km).

We next compared m/z 44AMS and OXL (from PILS) to assess the possibility of gas-particle partitioning of OXL 
and/or its precursors onto coarse mode particles such as dust. m/z 44AMS indicates the mass concentration of 
oxygenated/aged organic aerosol with the functional group CO2

+ (Zhang et al., 2005), of which OXL is a sub-
component. As the AMS sampled PM1 and the PILS sampled PM4 in CAMP2Ex, their comparison lends insight 
into how coarse mode particles (i.e., 1–4 μm) may affect PILS observations. Furthermore, because OXL is one 
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component of m/z 44AMS, comparing PILS OXL (PM4) to m/z 44AMS (PM1) can serve as an indicator of coarse 
mode OXL if OXL:m/z 44AMS ⪆ 1 as a highly conservative threshold. The high-OXL population has an OXL:m/z 
44AMS molar ratio of 2.84  ±  3.95 (Table S3 in Supporting  Information  S1), which provides strong evidence 
for coarse mode OXL (1–4 μm). This is supported by a high OXL:OrgAMS ratio in the high-OXL population 
(0.84 ± 0.98) compared to the high-SO4

2− population (0.01 ± 0.01). Interestingly, OrgAMS:SO4
2−

AMS is similar 
between the high-OXL (1.08 ± 1.34) and high-SO4

2− populations (1.27 ± 1.02). Since the AMS samples PM1, 
these findings offer more evidence that differences between populations lie in the coarse mode.

3.3. Impact of Biomass Burning on OXL:SO4
2−

Although strong OXL and SO4
2− correlations may be interpreted as a signal of aqueous processing (Sorooshi-

an, Varutbangkul, et al., 2006; Yao et al., 2003; Yu et al., 2005), the presence of BB emissions must also be 
considered as a source of both SO4

2− and OXL (Narukawa et al., 1999; Yang et al., 2014). When present, BB 
emissions led to enhanced OXL:SO4

2− ratios and correlations (Figure 1). Size-resolved OXL:SO4
2− show similar 

enhancements during BB periods (Figure S3b). In the presence of BB emissions, the OXL:SO4
2− ratio is known 

to increase from 0.05 (non-BB) to 0.18 (BB) in Sydney (Swan & Ivey, 2021) and from 0.03 to 0.069 (non-BB) to 
0.072–0.15 (BB) in Hong Kong (Zhou et al., 2015). Differences in BB-related OXL:SO4

2− between environments 
may be attributed to factors including biomass type (Christian et  al.,  2003), wet scavenging during transport 
(Marelle et al., 2015), combustion phase (Kondo et al., 2011; Pósfai et al., 2003), and sampled size range (i.e., 
PM4 for CAMP2Ex, PM1 for NiCE, PM18 for CHECSM). During CAMP2Ex, BB-impacted data suggested two 
subpopulations that differ slightly in their OXL:SO4

2− slopes (Figure 1h). Both populations were sampled during 
a large biomass burning event (September 15, 2019; RF9) but differ in terms of location (∼330 km apart), com-
position, and number concentration (not shown), pointing to clear differences within the CAMP2Ex BB-impacted 
population left for future work. Regardless of BB differences between campaigns, such a pronounced impact on 
the OXL:SO4

2− ratio in those respective datasets demonstrates the importance of accounting for BB when exploit-
ing the OXL:SO4

2− ratio for analysis and modeling purposes relevant to secondary aerosol formation processes.

Figure 2. Altitude-resolved linear regressions of dust species collected by the particle-into-liquid sampler during the Cloud, Aerosol, and Monsoon Processes-
Philippines Experiment (BB samples excluded) colored by OXL:SO4

2−. Red and blue dashed lines denote literature-based ratios for dust (Park et al., 2004; Švédová 
et al., 2019; Wang et al., 2018) and sea salt (Chesselet et al., 1972), respectively.
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4. Conclusions
Using composition data from multiple campaigns spanning a variety of environments, we calculated statistics 
of the OXL:SO4

2− mass ratio (median: 0.0217; R = 0.76; N = 2948), with 95% confidence interval bounds indi-
cating a relative uncertainty range of ∼±30% around the median (0.0154–0.0296). Ground-based size-resolved 
measurements show overall agreement with the proposed range, specifically within the submicrometer mode, 
suggesting our results are robust within the mixed layer for PM1. Results from remote marine measurements from 
AToM over the Pacific and near-surface Atlantic Oceans also corroborate the bootstrapped OXL:SO4

2− range. As 
analyzed environments span continental and coastal North America; west, east, and central Pacific Ocean; and 
west and central Atlantic Ocean, the confidence interval of the ratio is proposed to be robust to a wide range of 
factors that can impact the formation and removal of both OXL and SO4

2−. Furthermore, remarkable similarity 
betwen our 95% confidence interval (0.0154–0.0296) and the ratio of yields between SO4

2− and aqueous SOA 
(∼0.008–0.033) (Ervens et al., 2011) supports the hypothesis of a generalizable range of OXL:SO4

2−.

One exception to the hypothesized OXL:SO4
2− range was the occurrence of gas-phase OXL and/or its precursors 

partitioning onto dust aloft during CAMP2Ex. Additionally, BB emissions as a source of both OXL and SO4
2− 

may produce a strong correlation and greatly elevate their ratio. Thus, we caution against interpretating a strong 
OXL and SO4

2− correlation as a standalone signature of aqueous processing when coarse particle types (e.g., 
dust) and/or BB emissions are present.

Given its relative uncertainty range (∼±30% around the median) when taken across multiple environments, the 
95% confidence interval of the OXL:SO4

2− ratio could be used to assess the relative extent of aqueous process-
ing by comparing inferred OXL concentrations between air masses, with the implicit assumption that sampled 
SO4

2− mainly originates from aqueous processing, which is expected to be particularly true but not limited to near 
clouds. We emphasize that the OXL:SO4

2− ratio applies specifically to aqueous-processed aerosol (including via 
clouds or wet aerosol particles) and that an estimation of total SOA from this ratio requires additional information 
about the ratio of OXL and SOA. Furthermore, gas-phase oxidation is an important source of uncertainty in the 
ratio as it can be the dominant SO4

2− pathway at times and may partly explain OXL:SO4
2− variability between 

campaigns.

Examining the OXL:SO4
2− ratio in other parts of the world and seasons would be beneficial to further gauge its 

variability as well as to identify other potentially confounding factors. Future analysis employing the multi-sea-
sonal ACTIVATE campaign will provide a valuable data set for investigations of this nature.

Data Availability Statement
Data sources are: CHECSM (https://doi.org/10.6084/m9.figshare.11861859.v2), CAMP2Ex (https://doi.
org/10.5067/Airborne/CAMP2Ex_Aerosol_AircraftInSitu_P3_Data_1), ACTIVATE (http://doi.org/10.5067/
ASDC/ACTIVATE_Aerosol_AircraftInSitu_Falcon_Data_1), AToM (https://doi.org/10.3334/ORN-
LDAAC/1748), ICARTT and GoMACCS (https://doi.org/10.6084/m9.figshare.14998278), and other campaigns 
(https://figshare.com/articles/dataset/A_Multi-Year_Data_Set_on_Aerosol-Cloud-Precipitation-Meteorology_
Interactions_for_Marine_Stratocumulus_Clouds/5099983).
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